Highly efficient lithium extraction from magnesium-rich brines with ionic liquid-based collaborative extractants.

Thermodynamics and molecular insights.

Gangqiang Yu, Tobias Hubach, Christoph Held

Selective extraction of Li⁺ from high Mg^{2+}/Li^+ ratio brines with ionic liquid (IL) based collaborative extractants was investigated by experiments, thermodynamic analyses, and quantum chemical (QC) calculations. The results demonstrated that the system 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + trioctyl phosphate ([HOEMIM][Tf2N] + TOP) was considered as the best extractant, with the very high extraction efficiency of Li⁺ ($E_{Li+}\approx$ 83%) and separation selectivity of Li⁺/Mg²⁺ (\approx 742), which is higher than any known report from the open literature. The thermodynamic model ePC-SAFT was extended to quantitatively predict the phase equilibria of the so-called "organic-inorganic complex strong electrolyte system" presented in this work as well as the related extraction indicator E_{Li+} . The molecular-level extraction mechanism was explored by QC calculation, indicating that the strong multi-site intermolecular interactions between Li⁺ and [HOEMIM][Tf2N] + TOP break the Li⁺ hydration.

The molecular-level Li⁺ extraction mechanism from aqueous to organic IL+TOP phase was explored by QC using independent Gradient Model (IGM) analysis. Li⁺ and Mg²⁺ are hydrated by strong interaction of "Metal-O-H", and Li⁺ hydration is weaker than Mg²⁺ hydration. Thus, Li⁺ can be extracted from the aqueous to organic phases by Li⁺ hydration break, producing the complex Li⁺-TOP-[Tf₂N]⁻ dominated by the multi-site interaction consisting of Li⁺ \rightarrow O=P, S-N···Li⁺, S=O···Li⁺ C-H···O, and vdW dispersion interactions. In this case, TOP acts as extractant by coordinative interactions (Li⁺ \rightarrow O=P,) and the IL acts a co-extractant stabilizing the Li⁺-TOP-[Tf₂N]⁻ complex in an electrically neutral form.

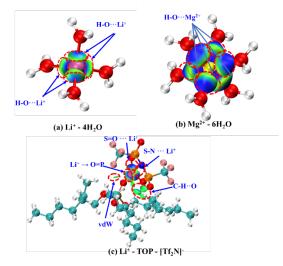
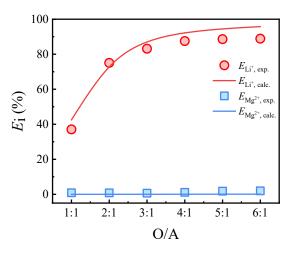



Figure 1. IGM visualization of ion hydration: Li⁺-H₂O (a), Mg²⁺-H₂O(b) and IGM visualization of the complex Li⁺-TOP-[Tf₂N]⁻ (c).

The extraction indicators for Li⁺ extraction were predicted by ePC-SAFT. All the underlying phase equilibria of the subsystems were modeled as well based on the isofugacity criterion. One of the key results was that ePC-SAFT allowed predicting that Li⁺ is transferred to the organic phase while Mg²⁺ stays in the aqueous phase, thereby allowing Li⁺/Mg²⁺ separation. The key method for this was an induced association treatment between Li⁺ and TOP in order to mimic the complex formation shown in Fig. 1c, which required only one binary parameter between Li⁺ and TOP. Remarkably, $E_{Mg^{2+}}$ was obtained without any Mg²⁺ extractant binary parameters. Further, the influence of organic:aqueous phase ratio (O:A) on E_{Li+} could be predicted well with ePC-SAFT, and E_{Li+} finally reaches a limiting value of \approx 85%.

Figure 2. Comparison of the calculated (lines) and experimental (points) on the effects of the volume ratio for the organic to aqueous phase (O/A) on Li⁺ and Mg²⁺ extraction efficiency with [HOEMIM][Tf₂N] + TOP as extraction system (Mg²⁺/Li⁺ = 40:1; and pH = 7 and $C_{\rm IL}$ = 0.09 mol/L), and the parameters were fitted to $E_{\rm Li^+}$ at O/A = 2:1 and 298.15 K, i.e., all other modeling lines are predictions.

To conclude, we could demonstrate the powerful prediction capacity of ePC-SAFT and its first successfully extended application to so-called "organic-inorganic complex strong electrolyte system" in Li⁺/Mg²⁺ extraction separation with ILs.

yugq@bjut.edu.cn (G. Yu) christoph.held@tu-dortmund.de (C. Held)

Publications:

Yu, G.; Zhang, X.; Hubach, T.; Chen, B.; Held, C. Highly efficient lithium extraction from magnesium-rich brines with ionic liquidbased collaborative extractants: Thermodynamics and molecular insights. Chemical Engineering Science, 286 (2024), 119682.

https://doi.org/10.1016/j.ces.2023.119682